Synchronized human skeletal myotubes of lean, obese and type 2 diabetic patients maintain circadian oscillation of clock genes

نویسندگان

  • Jan Hansen
  • Silvie Timmers
  • Esther Moonen-Kornips
  • Helene Duez
  • Bart Staels
  • Matthijs K. C. Hesselink
  • Patrick Schrauwen
چکیده

Cell and animal studies have demonstrated that circadian rhythm is governed by autonomous rhythmicity of clock genes. Although disturbances in circadian rhythm have been implicated in metabolic disease development, it remains unknown whether muscle circadian rhythm is altered in human models of type 2 diabetes. Here we used human primary myotubes (HPM) to investigate if rhythmicity of clock- and metabolic gene expression is altered in donors with obesity or type 2 diabetes compared to metabolically healthy donors. HPM were obtained from skeletal muscle biopsies of four groups: type 2 diabetic patients and their BMI- and age-matched obese controls and from lean, healthy and young endurance trained athletes and their age-matched sedentary controls. HPM were differentiated for 7 days before synchronization by serum shock followed by gene expression profiling over the next 72 hours. HPM display robust circadian rhythms in clock genes, but REVERBA displayed dampened rhythmicity in type 2 diabetes. Furthermore, rhythmicity in NAMPT and SIRT1 expression was only observed in HPM from trained athletes. Rhythmicity in expression of key-regulators of carbohydrate and lipid metabolism was modest. We demonstrate that in human skeletal muscle REVERBA/B, NAMPT and SIRT1 circadian rhythms are affected in donors of sedentary life style and poor health status.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FA1 Induces Pro-Inflammatory and Anti-Adipogenic Pathways/Markers in Human Myotubes Established from Lean, Obese, and Type 2 Diabetic Subjects but Not Insulin Resistance

AIMS Delta like 1/fetal antigen 1 (Dlk1/FA1) is a protein secreted by hormone producing cells in adult human and mice that is known to inhibit adipogenesis. Recent studies demonstrated the role of Dlk1/FA1 in inducing insulin resistance in mice. To investigate the involvement of circulating Dlk1/FA1 in insulin resistance and type 2 diabetes in human subjects, we studied the effects of chronic F...

متن کامل

patient-oriented research Metabolic flexibility is conserved in diabetic myotubes

The purpose of this study was to test the hypothesis that metabolic inflexibility is an intrinsic defect. Glucose and lipid oxidation were studied in human myotubes established from healthy lean and obese subjects and patients with type 2 diabetes (T2D). In lean myotubes, glucose oxidation is raised by increasing glucose concentrations (0– 20 mmol/l) and acute insulin stimulation (P, 0.05), whe...

متن کامل

Increased FAT/CD36 Cycling and Lipid Accumulation in Myotubes Derived from Obese Type 2 Diabetic Patients

BACKGROUND Permanent fatty acid translocase (FAT/)CD36 relocation has previously been shown to be related to abnormal lipid accumulation in the skeletal muscle of type 2 diabetic patients, however mechanisms responsible for the regulation of FAT/CD36 expression and localization are not well characterized in human skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS Primary muscle cells derived fro...

متن کامل

Myotubes from lean and severely obese subjects with and without type 2 diabetes respond differently to an in vitro model of exercise.

Exercise improves insulin sensitivity and oxidative capacity in skeletal muscles. However, the effect of exercise on substrate oxidation is less clear in obese and type 2 diabetic subjects than in lean subjects. We investigated glucose and lipid metabolism and gene expression after 48 h with low-frequency electrical pulse stimulation (EPS), as an in vitro model of exercise, in cultured myotubes...

متن کامل

Suppressor of cytokine signaling 3 expression and insulin resistance in skeletal muscle of obese and type 2 diabetic patients.

Interleukin-6 (IL-6) could be a possible mediator of insulin resistance. We investigated whether IL-6 could inhibit insulin signaling in human skeletal myotubes and whether suppressor of cytokine signaling 3 (SOCS-3) could be related to insulin resistance in vivo in humans. IL-6 inhibited insulin signaling and induced SOCS-3 expression in differentiated myotubes. SOCS-3 mRNA levels were signifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016